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An experiment to establish
the limits of our predictive capability
of weather elements for Melbourne
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The results of an experiment, which involves verifying a set
of quantitative forecasts for Melbourne out to 14 days, are
presented. The results are used to assess whether or not
extending the period of the official forecasts beyond four
days might be justified. The experimental forecasts are ver-
ified against ‘climatology’ and a randomly generated set of
forecasts. The verification data derived using the methodol-
ogy suggest that, at present, routinely providing or utilising
day-to-day forecasts beyond day 4 would be inappropriate.
The data also suggest, however, that it might be possible to
provide some useful information about the likely weather up
to about six days in advance for some elements, in some sea-
sons and in some situations, for example, maximum temper-
ature during summer. By contrast, in some circumstances it
may not be possible to provide useful information even for
day 1. Nevertheless, the data indicate that it might be possi-
ble to make useful statements about the expected average
weather conditions over the 10-day period between days 5

and 14.

Introduction

Background

The Victorian Regional Office (VRO) of the
Australian Bureau of Meteorology (BoM) currently
provides one to four-day weather forecasts to the gen-
eral public. These forecasts are issued each afternoon
by the VRO Regional Forecasting Centre (RFC) in
Melbourne. The forecasts are based upon an inter-
pretation, in terms of local weather, of the output of
various global and Australian region numerical
weather prediction (NWP) models.
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This interpretation is carried out using a combination
of the Generalised Analogue Statistics Model (GASM)
(Stern, 1980a, 1980b; Dahni et al. 1984; Dahni 1988;
Dahni and Stern 1995; Stern 1996), Model Output
Statistics (MOS) (Woodcock 1984) and other guidance
(including simple objective forecasting aids).

There is potential for extending the application of
such forecast guidance schemes because interpreting
local weather in terms of the synoptic flow is readily
automated by statistical methodologies. Indeed;
Brooks (1995) wrote that ‘technology, which initially
allowed humans to make routine weather forecasts,
will soon close that avenue of human endeavour ...
(and thereby permit) concentration on severe events’.
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That this prediction by Brooks may soon become a
reality is supported by Fig. 1, which presents forecast
verification data for seventeen Victorian centres.
Figure 1 suggests that, overall, whereas human fore-
casters are capable of significantly improving upon
computer generated guidance for short-term predic-
tions of temperature, that capability is much reduced
for long-term predictions.

However, this reduction in performance may part-
ly be a consequence of less attention being able to be
directed towards the lower priority long-term predic-
tions. Figure 2, which presents forecast verification
data for Melbourne alone, indicates that where fore-
casters (particularly experienced forecasters, such as
those in the VRO RFC) focus on a particular location,
that capability is somewhat preserved. In the

Victorian office, forecasters would be expected to .

focus on Melbourne, the State capital.

The United States National Centers for
Environmental Prediction (NCEP) currently produce
a 15-day global ensemble average prognosis (Toth
and Kalnay 1993; Tracton and Kalnay 1993; Climate

Fig. 1 Chart illustrating the extent that official maxi-
mum temperature forecasts (squares) for seven-
teen Victorian centres, issued several days
ahead, improved upon the guidance generated
by GASM using the European Centre for
Medium-range Weather Forecasts (ECMWF)
global model output (diamonds). The January
1997 to June 1997 officiat VRO RFC data, upon
which this chart is based, were provided by
Setek (personal communication 1997).
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Fig. 2 As Fig. 1, but for Melbourne alone. The
January 1997 to June 1997 official VRO RFC
data, upon which this chart is based, were pro-
vided by Setek (personal communication

1997).
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Diagnostics Center 1997). That the NCEP prognosis
extends out to 15 days is consistent with the work of
Lorenz (1963, 1969a, 1969b, 1993), which suggests
a 15-day limit to day-to-day predictability of the
atmosphere.

Purpose

This paper has a two-fold purpose:

(a) To present preliminary results of an experiment,
which involves verifying a set of quantitative fore-
casts for Melbourne out to 14 days. These forecasts
are based on a subjective interpretation of the NCEP
predictions of mean sea-level pressure (MSLP), 500
hPa height and 1000-500 hPa thickness distribu-
tions, when available, for days 5 to 14, and on the
official forecasts for days 1 to 4; and,

(b) To use the results to assess whether or not extending
the period of the official forecasts beyond four days
might be justified. After all, ‘verification allows
forecasters to know, quantitatively and objectively,
how well they are doing, and in what ways they can
improve their product’ (Doswell 1995).

The work presented is an update of a paper by

Stern (1998) which was mainly based on data from

the winter season only.

Verification methodology

Verification measures

The experimental forecasts are verified against ‘cli-

matology’ and a randomly generated set of forecasts.

The ‘climatology’ of a particular weather element is

regarded as the monthly mean value of that element —

the calendar-day climatology displays day-to-day

fluctuations that are too great for it to be considered a

stable measure of climatology. The randomly gener-

ated set of forecasts are the official day 1 forecasts
that were issued 15 days prior to the verifying day,
given the 15-day theoretical limit on the relationship
between weather patterns and, hence, atmospheric

predictability (Lorenz 1963, 1969a, 1969b, 1993).
Several verification measures are used, with a

view to establishing a possible limit to actual predic-

tive capability.
These measures are:

(a) root mean square (rms) error of the minimum tem-
perature forecasts, ‘af’;

(b) rms error of the maximum temperature forecasts,
bf';

(c) rms error of the quantitative precipitation forecasts
(QPF) in rainfall ranges, as defined by Stern
(1980a), ranges 0, 1, 2, 3, 4, 5, etc. being respec-
tively, less than 0.2 mm, 0.2-2.5 mm, 2.6-5 mm,
5.1-10 mm, 10.1-20 mm, 20.1-40 mm etc., ‘¢f’;
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(d) percentage rain/no rain (R/NR) forecasts correct,
‘df (‘df has a strong dependence on the climate
probability, which varies through the year, and
this variation slightly reduces the usefulness of the
measure); and,

(e) Brier score (Brier 1950) about probability of pre-
cipitation (PoP) forecasts, as modified in accor-
dance with how it is now ‘used almost universally’
(Wilks 1995), ‘ef .

For each of the forecast days 1 to 14 inclusive,
these measures are calculated. They are then com-
pared with corresponding measures of the perfor-
mance of climatology (ac, bc, cc, dc, ec) and com-
bined into a series of skill scores for each of the
Melbourne day 1 to 4 official forecasts and day 5 to
14 experimental forecasts.

Verification skill scores

Table 1 summarises the definitions of the verification
measures employed to evaluate the forecasts. The
‘minimum temperature skill score’ (Fig. 3), the ‘max-
imum temperature skill score’ (Fig. 4), the ‘QPF skill
score’ (Fig. 5) and the ‘R/NR skill score’ (Fig. 6), and
the ‘Brier skill score’ (Fig. 7), require little further
explanation. In regard to the ‘R/NR skill score’ and
the ‘Brier skill score’, the square roots of (df/dc) and
(ec/ef) are required, in order that they be directly com-
parable to (ac/af), (bc/bf) and (cc/cf) (which intrinsi-
cally do include a square root function). It is also
worthwhile to note that the ‘R/NR skill score’ appears
to be the inverse of the others because, unlike the oth-
ers, its components increase, rather than decrease, as
accuracy increases.

The ‘temperature skill score’ (Fig. 8) is simply the
mean of the two temperature skill scores. The ‘rainfall
skill score’ (Fig. 9) is simply the mean of the three
precipitation skill scores. The ‘joint skill score’ (Fig.

Table 1. The definitions of the verification measures
employed to evaluate the forecasts.

Skill score Definition

minimum temperature 100((ac/af)-1)

maximum temperature 100((be/bf)-1)

QPF 100((cc/cf)-1)

R/NR 100((df/dc)12-1)

Brier 100((ec/ef) /2-1)

Temperature 100((ac/af)+(bc/bf)-2)/2

Rainfall 100((cc/cH+(dffdc) 2+
(eclef)\2-3)/3

joint ((100((ac/af)+(bc/bf)-2)/2)+

(100((cc/cfy+(dffdc) 2+
(eclef) 2-3)13))2

Fig. 3
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Fig.7

Minimum temperature skill score compared to
climatology. The predictions verified are the
official forecasts, for days 1 to 4, and the fore-

.casts based on a subjective interpretation of

the NCEP output, for days S to 14. Positive
values show skill better than climatology. A
perfect score is ‘infinite’ (random = -21).
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As Fig. 3, but for maximum temperature skill
score (random = -21).
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As Fig. 3, but for R/NR skill score (random = -4).
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Fig. 8  AsFig. 3, but for temperature skill score (ran-
dom = -21).
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Fig. 9  As Fig. 3, but for rainfall skill score (random
= -6).
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Fig. 10  As Fig. 3, but for joint skil skill score (random

=-13).
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10) is simply the mean of the temperature and rainfall
skill scores (the ‘joint skill score’ should always be
considered in the context of its components because,
taken on its own, it represents a fairly radical reduc-
tion in forecast verification dimensionality — see
Murphy (1991)).

In addition, skill scores for sets of randomly gen-
erated forecasts are quoted in the figure captions.

Interpreting worded forecasts

In order to verify the official forecasts objectively, it
is necessary to interpret worded components of the
one to four-day forecasts in terms of QPF, R/NR and
PoP.

Stern (1980a) developed a standard system of ter-
minology linked directly with the coded observations,
as recorded in the official observation book (BoM
1977) and this is presented, in full, in Stern’s (1980a)
Appendix A. The format for the system of terminol-
ogy is a description based on weather and cloud, fol-
lowed by a description based on wind, followed by
minimum and maximum temperatures and rainfall

amount, followed by a precis and clarification of pre-
ceding components. Stern’s (1980a) Appendix C
includes an objective scheme to ‘translate’ official
forecasts into that terminology and a consequential
objective means to evaluate the official forecast.

Stern’s (1998) Table 1 interpretation of worded
components of the one to four-day forecasts was
based on the aforementioned scheme. However,
Stern (1998) reports ‘that some of the words might
better have been assigned ... (different interpreta-
tions) ... than they were’. The present paper’s Table
2 represents an adjustment of that earlier interpreta-
tion, the adjustment being based on data gathered dur-
ing the period of the present experiment. As a result,
some of the words relating to precipitation probabili-
ty are assigned lower probabilities in the present
paper than they were by Stern (1998).

Figure 11 depicts the frequency with which pre-
cipitation occurred in association with various PoPs.
It provides support to Table 2’s interpretation of the
worded components in terms of PoP as well as to the
forecasters’ skill at composing these components.

Figure 12 . depicts the mean precipitation that
occurred in association with various QPFs. It pro-
vides support to Table 2’s interpretation of the word-
ed components in terms of QPF as well as to the fore-
casters’ skill at composing these components.

Fig. 11  Percentage of occasions day 1, 2, 3 and 4 PoPs
were associated with precipitation. Skill is
demonstrated by the fact that the percentage
increases as the PoP estimates increase.
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Fig. 12 Observed mean precipitation associated with
day 1, 2, 3 and 4 QPFs. Skill is demonstrated
by the fact that the observed mean precipita-
tion increases as the QPFs increase.
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Table 2. Interpretation of words in terms of PoP (%) and QPF (Ranges). R/NR is defined by PoP being above or below
50%. It is set at a 50/50 chance if PoP is 50%. The second figure in a column applies if precipitation is refer-
enced only in one of the pre-noon / post-noon periods (for example, ‘showers clearing’, ‘morning drizzle’).

Words PoP (%) QPF (Ranges: 0, 1, 2, 3, 4
are respectively <0.2mm,
0.2-2.5mm, 2.6-5mm, 5.1-
10mm, 10.1-20mm)

Sunny 10 0

Mainly sunny; Fine 20 0

Becoming sunny; Partly cloudy; Becoming cloudy; Mainly cloudy;

Cloudy 30 0

Chance of precipitation; Chance of thunder; Unsettled; Cool change

(with no precipitation reference); Local showers; Local thunder;

Fog or drizzle; Drizzle patches; Little drizzle; Becoming fine 40 0

Few showers; Little rain; Mainly fine; Shower or two- 50, 40 1,0

Drizzle 80, 60 1

Showers 80, 70 2,1

Snow; Sleet 90, 80 2,1

Thunderstorms 80, 70 3,2

Rain 90, 80 3,2

Showers, heavy at times 90 3

Rain at times 90 3

Rain, heavy at times; Thunderstorms, heavy at times 90 4

Discussion

Forecast performance

Figures 3 to 10 show that skill at predicting both tem-

perature and rainfall decline, albeit unsteadily, as one

moves from day 1 to day 14. The unsteady character
of some of the declines is probably a consequence of
the experiment being based on only one year’s data.

The experiment began in May 1997 - the first forecast

verified was that based on 20 May 1997 data; the

most recent forecast verified was that based on 19

May 1998 data. The declines might be expected to

become smoother as the numbers of data increase.
The data depicted in Figs 3 to 10 show that:

(a) overall forecast performance, as measured by the
‘joint skill score’ (Fig. 10) declines rapidly from
day 1, the skill displayed falling to a level that is
no better than climatology at day 5;

(b) in regard to the individual components of the
‘joint skill score’, the skill displayed by the ‘QPF
skill score’ (Fig. 5) and the ‘Brier skill score’ (Fig.
7) both fall to a level that is no better than clima-
tology at day 4;

(c) the skill displayed by the ‘minimum temperature
skill score’ (Fig. 3) and the ‘R/NR skill score’ (Fig.
6) both fall to a level that is no better than clima-
tology at day 5:

(d) by contrast, when compared to climatology, it is
not until day 7 that skill displayed by the ‘maxi-
mum temperature skill score’ (Fig. 4) falls to a
level that is no better than climatology (the appar-
ent skill here could be due to a small number of
correctly forecast extreme values);

(e) overall, forecast performance declines more slow-
ly from day 5 to about day 9, at which point it is
not only substantially inferior to climatology, but
is also close to that performance to be expected
from a randomly generated forecast; and,

(f) overall forecast performance remains close to that
performance to be expected from a randomly gen-
erated forecast from day 9 to day 14, although there
is a slight increase in skill after day 9 (although not
statistically significant, this trend appears to be
‘real’ and is explained in the next subsection).

Explanation

The superior performance of the maximum temperature
forecasts (when compared with the forecasts of other
elements) is reflected in it not being until day 7 during
the warmer half of the year (October to March) that this
set of forecasts display no skill (this is explained later).
By contrast, during the cooler half of the year (April to
September), the skill displayed falls to a level that is
inferior to climatology at day 5. This is even though
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Melbourne maximum temperature variability is less
during the cooler half of the year (Stern 1996).

Interestingly, it is also not until day 7 during the
warmer half of the year that the minimum tempera-
ture forecasts display no skill. However, the skill dis-
played by the minimum temperature forecasts on days
5 and 6 during the warmer half is slight. For this rea-
son, the ‘minimum temperature skill score’ calculated
over the complete dataset reaches a skill level that is
no better than climatology at day 5.

That the overall forecast performance (Fig. 10)
declines to a level that is no better than climatology at
day 5 may be attributed to there being limited useful
skill displayed by the associated NCEP ensemble
prognoses. Although there are no verification data
over the Australian region about the accuracy of the
NCEP ensemble prognoses, there are such data col-
lected (by the BoM’s National Meteorological Centre
(NMC)) about the accuracy of a number of other
deterministic prognoses that are routinely available to
Australian forecasters. These data suggest that the
ECMWF MSLP prognosis (base time 10 pm
Australian Eastern Standard Time the night before) is
the most accurate of those prognoses that are avail-
able at the time of issue of the official late afternoon
Melbourne forecast for the next four days. This prog-
nosis recorded an average anomaly correlation (AC)
over the Australian region during 1997 of 0.585 at
144 hours (the 144-hour output would need to be used
for a forecast valid on the fifth day).

The work of Hollingsworth et al. (1980), Murphy
and Epstein (1989) and Wilks (1995) all suggests that
an anomaly correlation of 0.6 may be employed as a
lower cut-off for useful forecast skill. This suggests
that even the ECMWF MSLP forecast would be con-
sidered to display insufficient skill to justify its use
for a weather prediction beyond four days. This is
notwithstanding Wilks (1995) having reported higher
(than 0.6) ACs for 500 hPa prognoses given that
‘Melbourne’s weather is highly correlated with the
surface circulation’ (Stern, 1980a).

The decline in overall forecast performance to a
level that is inferior to climatology is attributed to the
forecasts based on climatology not including errors as
large as the forecasts based on the full range of possi-
bilities, as would a set of randomly generated forecasts.

The slowly declining overall forecast performance
between day S, when it reaches a level no better than
climatology, to day 9, when it reaches a level close to
the level of a randomly generated forecast, deserves
explanation. This is attributed to there being some
residual skill present in forecasts for some elements
and in some synoptic situations during the day 5 to 9
component of the forecast period. That there is this
skill is supported by the data presented in Fig. 13.

Fig. 13 A comparison of the R/NR skill scores for
high-confidence forecasts (diamonds) and low-
confidence forecasts (squares). High-confi-
dence forecasts are those with PoPs of 10-20%
or 80-90%. Low-confidence forecasts are those
with PoPs of 30-70%.
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Figure 13 shows that, for example, when there is
confidence about whether or not precipitation is like-
ly, either:

() on the part of the official forecaster (up to day 4); or

(b) due to a strong signal from the NCEP MSLP, 500
hPa, and 1000-500 hPa ensemble averages (from
day 5);

then — this confidence is justified.

Figure 13 also shows that, when there is little con-
fidence about whether or not precipitation is likely,
this reduced confidence is justified by estimates that
are no better than climatology even at day 1 (it might
be expected that forecasts with no confidence should
possess the same skill as climatology).

The slight improvement in overall forecast perfor-
mance from about day 9 to day 14 is attributed to the
NCEP ensemble average prognosis tending towards
climatology at the end of the forecast period, probably
as a result of there being less energy through cascading.

That most of the precipitation-related skill scores
decline to a level inferior to climatology, sooner than
do the temperature-related skill scores, also deserves
explanation. The relatively more rapid decline of the
precipitation-related skill scores might be due to the
combined effect of:

(a) temperature, particularly maximum temperature
during summer, being highly correlated with fea-
tures of the broadscale flow; ‘

(b)useful information about the broadscale flow able
to be readily derived from the prognoses for a rel-
atively long period ahead;

(c)difficulty in timing onset and duration of precipi-
tation at longer lead times;

(d)the occurrence of precipitation being not as highly
correlated (as is temperature) with features of the
broadscale flow; and (as a consequence)

(e)useful information about the complex physical
processes associated with both broadscale and
convective precipitation able to be derived from
the prognoses for only a relatively short period
ahead.
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That the less rapid decline in the temperature skill
scores are not observed in the winter data might be
due to winter temperature, particularly winter maxi-
mum temperature, not being as highly correlated with
features of the broadscale flow as is temperature in
the other seasons. This is on account of the greater
daytime solar insolation in summer leading to mixing
of the low-level air to a greater depth. Another factor
might be the reduced inter-diurnal temperature vari-
ability in the winter, resulting in a reduced opportuni-
ty to demonstrate skill.

The somewhat negative picture painted by the
overall performance might be attributed to the exper-
imental forecasts being based on a subjective inter-
pretation of only one set of numerical prognoses.
During parts of the period that the experimental
NCEP-based forecasts have been prepared, forecasts
of temperature have also been prepared by five other
sources. These sources are the ECMWF GASM guid-
ance, the GASP GASM guidance, the experimental
VRO RFC forecasts, independent predictions by a
‘group’ hereafter referred to as Forecaster (1), and
independent predictions by a ‘group’ hereafter
referred to as Forecaster (2). Table 3 depicts the per-
centage improvement that these sources achieved
over corresponding experimental NCEP-based pre-
dictions. Verification of these other temperature fore-
casts- can be expected to shed some light upon
whether or not the NCEP-based forecasts under-esti-
mate the level of potential skill.

Table 3 suggests that all five sources were inferior
to the NCEP-based performance at predicting maxi-
mum temperature. However, application of two-tail

tests indicates that in no case is the inferiority signif-
icant at the five per cent level.

However, Table 3 suggests that only one of the
sources was inferior to the NCEP-based performance at
predicting minimum temperature and that the superior-
ity of the ECMWEF and GASP guidance over the NCEP-
based forecasts is significant at the five per cent level.

In summary, Table 3 indicates that the perfor-
mance of the NCEP-based maximum temperature
forecasts is probably a reasonable measure of what
can be achieved in predicting that element. However,
Table 3 tells us that the performance of the NCEP-
based minimum temperature forecasts may be an
under-estimate of what can be achieved in predicting
that element.

Some implications

Traders in agricultural commodities regularly utilise
longer term day-to-day predictions in their work. For
example, the 22 June 1992 Wall Street Journal report-
ed that ‘the possible development of a high pressure
ridge’, depicted in the 10th day of the US National
Weather Service’s (NWS) model, sparked ‘renewed
fears of a drought in the central Midwest (and) drove
grain futures prices higher at the Chicago Board of
Trade’. If the data presented for Melbourne are
regarded as representative of other locations, this
practice cannot be justified. Indeed, the NWS model
prediction, referred to earlier, proved to be incorrect
and the Wall Street Journal of 3 July 1992 reported
that ‘heavy rain ... helped alleviate short-term .
drought fears and drove grain futures prices lower at
the Chicago Board of Trade’.

Table 3. Ratio of temperature variance not explained by NCEP-based predictions, over that not explained by ECMWF
GASM guidance, GASP GASM guidance, VRO RFC forecasts, independent predictions by Forecaster (1) and
independent predictions by Forecaster (2). Values below 1.0 suggest that the source is inferior to that of the
NCEP-based predictions. Values above 1.0 suggest that the source is superior to that of the NCEP-based pre-
dictions. Significant values are indicated with an asterisk.

Source Days Element Number Ratio
ECMWF Day 5 Max 61 0.90
GASP . Days 5,6 & 7 Max 132 0.91
VRO Days S, 6, & 7 Max X 45 0.79
Forecaster (1) Days S & 6 Max 270 0.86
Forecaster (2) Days 5,6, & 7 Max 199 0.89
ECMWF Day 5 Min 61 1.98*
GASP : Days 5 & 6 Min 131 1.74*
VRO Days 5,6 & 7 Min 45 1.77
Forecaster (1) Days5& 6 Min 270 0.84
Forecaster (2) Days 5,6 & 7 Min N/A ’ N/A
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It may be asserted, however, that even when the
NCEP-based forecasts for the individual 10 days
between days 5 and 14 display no skill, they never-
theless may indicate the overall weather conditions
during that 10-day period. In order to assess the
validity of this assertion, each of the forecast sets was
evaluated in terms of whether or not a correct indica-
tion was given of whether or not the number of rain
days during the period was more than the climatolog-
ical normal. Sixty-one per cent of the forecast sets
gave such a correct indication.

Employing a one-tail test on this proportion, and
regarding each of the ten-day forecast sets as inde-
pendent from each other, suggests the statement
that ‘the proportion is greater than 50%’ is signifi-
cant at the 0.2 per cent level. However, the forecast
sets are not completely independent from each
other - they partially overlap. Taking into account
this overlapping, the level of significance reduces
to 13 per cent. Given that overlapping implies only
partial dependence, on account of the NCEP prog-
noses having different initial conditions, the true
level of significance is between 0.2 per cent and 13
per cent — an encouraging outcome, but one that is
not conclusive.

Conclusion

Findings

A rigorous forecast verification methodology has

been described, which may be used to guide deci-

sion-makers about the validity (or otherwise) of pro-

viding (or utilising) longer-term day-to-day weather

predictions.
The verification data derived using the methodol-

ogy suggest that, at present:

(a)routinely providing or utilising day-to-day fore-
casts beyond day 4 would be inappropriate; but,

(b)it might be possible to provide some useful infor-
mation about the likely weather up to about six
days in advance for some elements, in some sea-
sons and in some situations (notwithstanding that
the level of skill displayed at these longer lead
times is limited). For example, electricity compa-
nies, wishing to plan for the heavy loadings that
are caused by excess use of air conditioners during
heatwaves in summer, would benefit from temper-
ature forecasts out to six days during that season.
By contrast, in some circumstances it may not be
possible to provide useful information even for
day 1; and,

(c) it might also be possible to make useful statements
about the expected average weather conditions
over the ten-day period between days 5 and 14.
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Future work

The conclusions presented here are largely based
on only one year’s data for one place. It is there-
fore planned to continue the experiment, to extend
it to other places because local features, such as
distance from the ocean, may influence the level of
potential forecast skill associated with long lead-
time predictions.

Finally, it is also planned to explore the use of
MOS as a tool to provide longer term day-to-day pre-
dictions. A MOS-based forecast would tend towards
climatology as forecast skill decreases to zero.
However, it also would provide a ‘best-guess’ of the
extent to which a forecaster could depart from clima-
tology, where potential forecast skill does exist.
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